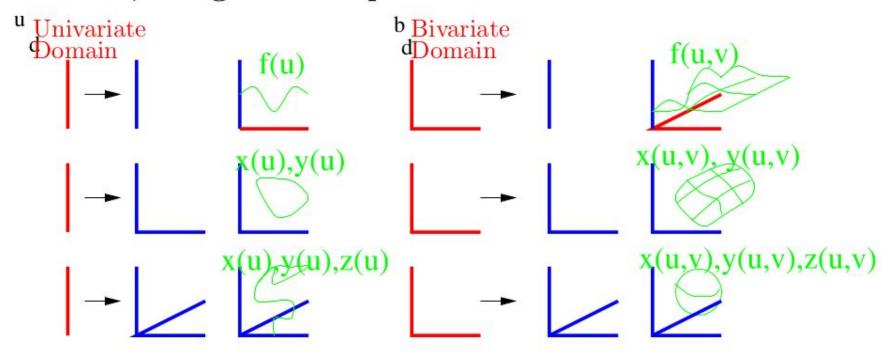
Computer Graphics Jorg Peters

Domain, Range and Maps

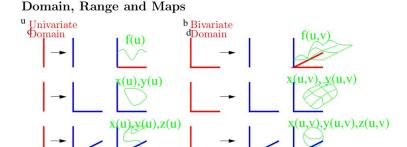


Computer Graphics

Jorg Peters

Related Concepts

- Graph of a function
- 1-Manifold ~ curve
- 2-Manifold ~ surface



- Scalar field: R³ → R¹ Each point in 3-space is assigned a scalar
- Vector field: R³ → R³

Tensor field: R³ → R³×3

...a vector

...a tensor

Computer Graphics Jorg Peters

Polynomials and Polynomial Forms

Polynomial of degree n :- an infinitely differentiable map whose nth derivative is constant

Polynomial p in of degree d in Bernstein-Bézier form (BB-form)

$$p := \sum_{i+j=d} c(i)B_{j,i},$$
 where $B_{j,i}(u) = \frac{d!}{i!j!}u^i(1-u)^j$

Typically, p is evaluated on the interval [0, 1]. This yields a polynomial piece.

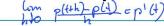
BB-form

Computer Graphics Jorg Peters

$$p := \sum_{i+j=d} c(i)B_{j,i},$$

where
$$B_{j,i}(u) = \frac{d!}{i!j!}u^i(1-u)^j$$

Maps and Curved Geometry



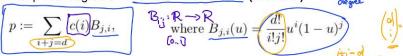
Computer Graphics Jorg Peters

Polynomials and Polynomial Forms

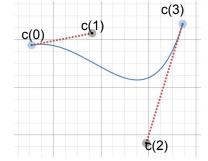
$$\sqrt{t}$$
 $\sqrt{2}$ fomh . Sq. a_{i} $a_{$

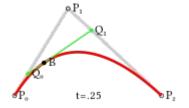
Polynomial of degree n :- $p'(t) = -a_0 2(1-t) + a_1 2t + a_2 2t$ an infinitely differentiable map whose in the derivative is constant $p''(t) = 2(a_0 - 2q_1 + q_2)$

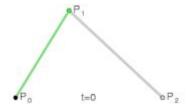
Polynomial p in of degree d in Bernstein-Bézier form (BB-form)



Typically, p is evaluated on the interval [0, 1]. This yields a polynomial piece.







Curve editor https://www.desmos.com/calculator/ebdtbxgbg

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

BB-form

Computer Graphics Jorg Peters

$$p := \sum_{i+j=d} c(i)B_{j,i}, \quad \text{where } B_{\underline{j},i}(u) = \frac{d!}{i!j!}u^{i}(1-u)^{j} \quad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{e!!}{(e!i)!}, \quad \frac{d!}{j!} = \begin{pmatrix} d \\ i \end{pmatrix}$$

$$= \sum_{i+j=d} c(i)B_{j,i}, \quad \text{where } B_{\underline{j},i}(u) = \frac{d!}{i!j!}u^{i}(1-u)^{j} \quad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{e!!}{(e!i)!}, \quad \frac{d!}{j!} = \begin{pmatrix} d \\ i \end{pmatrix}$$

$$= \sum_{i+j=d} c(i)B_{j,i}, \quad \text{where } B_{\underline{j},i}(u) = \frac{d!}{i!j!}u^{i}(1-u)^{j} \quad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{e!!}{(e!i)!}, \quad \frac{d!}{j!} = \begin{pmatrix} d \\ i \end{pmatrix}$$

$$= \sum_{i+j=d} c(i)B_{j,i}, \quad \text{where } B_{\underline{j},i}(u) = \frac{d!}{i!j!}u^{i}(1-u)^{j} \quad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{e!!}{(e!i)!}, \quad \frac{d!}{j!} = \begin{pmatrix} d \\ i \end{pmatrix}$$

$$= \sum_{i+j=d} c(i)B_{j,i}, \quad \text{where } B_{\underline{j},i}(u) = \frac{d!}{i!j!}u^{i}(1-u)^{j} \quad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{e!!}{(e!i)!}, \quad \frac{d!}{j!} = \begin{pmatrix} d \\ i \end{pmatrix}$$

$$= \sum_{i+j=d} c(i)B_{i,i}, \quad \frac{d!}{d!} = \begin{pmatrix} d \\ i \end{pmatrix} = = \begin{pmatrix} d \\ i$$

BB-form

where $B_{j,i}(u) = \frac{d!}{i!j!} u^i (1-u)^j$ algorithm de Casteljan $p := \sum \mathbf{c}(i)B_{j,i},$ for 1=1..d for i= 0..d-l C [i,d-l-i) = (1-t) c (i,d-l-i+1) + t c (i+1,d-l-i) C(0,0) C(0,1) subdivision

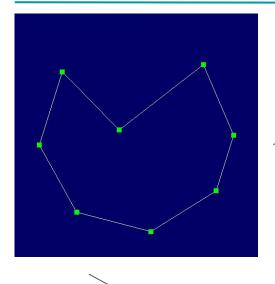
Computer Graphics Jorg Peters

B-form

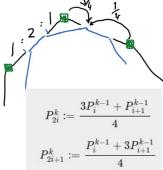
VS

BB-form

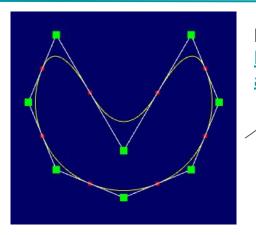
Computer Graphics Jorg Peters



Evaluate: <u>De</u>
Boor's algorithm

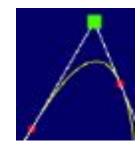


Repeat = subdivision



Evaluate:

<u>DeCasteljau's</u> <u>algorithm</u>



Repeat = subdivision

Computer Graphics Jorg Peters

Piecewise polynomials in B-spline form (B-form)

Industry uses the acronym <u>NURBS</u> = Non-uniform rational B-spline

Uniform splines can be efficiently evaluated by subdivision.

Spline = piecewise polynomial (function).

Knots delineate the break points between polynomial pieces.

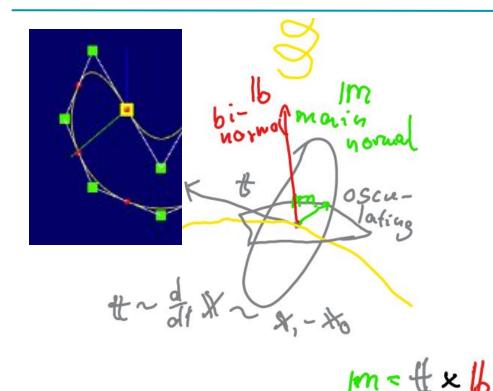
Typically some smoothness is enforced between the pieces.

A spline can be represented in Bézier form by connecting pieces in Bézier form.

A spline can be represented in B-spline form.

Space curves

Computer Graphics Jorg Peters



Project 1C:

05calohug ploue *0, *1, *2 16 ~ (x,-*.) x (*2-x0)